Lipschitz Continuous
Published:
Brief introduction of Lipschitz continuous in machine learning.
Introduction
Lipschitz continuous means that f must be K-Lipschitz continuous. f is called K-Lipschitz continuous if there exists a real constant K≥0 such that, for all x1,x2∈R,
f(x1)−f(x2) | ≤K | x1−x2 |
Here K is the Lipschitz constant for function f.
Lipschitz 连续意味着 f 必须是 K-Lipschitz 连续的。 f 被称为 K-Lipschitz 连续,如果存在实常数 K≥0 使得对于所有 x1,x2∈R,
f(x1)−f(x2) ≤K x1−x2 这里K 是函数f 的Lipschitz 常数。
In Wasserstein GAN, the Lipschitz constraints is enforced in neural network (discriminator), like 1-Lipschitz, for keeping the training stable.
(In our former work, ‘stable’ is something always stand against long-term memory.)
在 Wasserstein GAN 中,Lipschitz 约束在神经网络(鉴别器)中强制执行,如 1-Lipschitz,以保持训练稳定。
(在我们以前的工作中,“稳定”总是与长期记忆背道而驰。)