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Abstract

Tensor-power (TP) recurrent model is a
family of non-linear dynamical systems, of
which the recurrence relation consists of
a p-fold (a.k.a., degree-p) tensor prod-
uct. Despite such the model frequently ap-
pears in the advanced recurrent neural net-
works (RNNs), to this date there is limited
study on its memory property, a critical char-
acteristic in sequence tasks. In this work,
we conduct a thorough investigation of the
memory mechanism of TP recurrent mod-
els. Theoretically, we prove that a large de-
gree p is an essential condition to achieve the
long memory effect, yet it would lead to un-
stable dynamical behaviors. Empirically, we
tackle this issue by extending the degree p
from discrete to a differentiable domain, such
that it is efficiently learnable from a variety
of datasets. Taken together, the new model
is expected to benefit from the long mem-
ory effect in a stable manner. We experimen-
tally show that the proposed model achieves
competitive performance compared to vari-
ous advanced RNNs in both the single-cell
and seq2seq architectures.
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cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

1 Introduction

Recurrent neural networks (RNNs) have been popu-
larly used for tasks arising in domains such as time
series analysis and natural language processing. They
are powerful because the recurrent dynamics of the
hidden states allow the models to remember the past
information. In the standard RNNs, the transition
function of the hidden states obeys a linear trans-
form1 following an element-wise activation function,
and the vanilla form of RNN has an inherent difficulty
to learn the long-range dependence of the data (Bengio
et al., 1994). As alternatives, a family of variants of
RNNs are proposed, where the linear form of the tran-
sition function is extended to higher-degree polynomi-
als (Sutskever et al., 2011; Wu et al., 2016; Schlag and
Schmidhuber, 2018). Rich results by numerical exper-
iments demonstrate the RNNs equipped with polyno-
mial transitions are more expressive than their vanilla
counterparts (Yu et al., 2017a; Su et al., 2020).

However, those polynomial-induced variants fail to be-
come mainstream models in sequence tasks. The cause
is mainly twofold: theoretically, it remains unclear
why the higher-degree models outperform their lin-
ear counterparts; empirically, an “over-large” degree
would lead to the model being unstable in both the
training and inference phases. Moreover, the model
size would explode when the degree increases. Al-
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though for the latter it is alleviated by tensor decom-
position (TD) (Ye et al., 2018; Pan et al., 2019), the
selection of the degree parameters is still achieved with
the inefficient exhausitive search (Yu et al., 2017b; Hou
et al., 2019). As a consequence, the state of affairs
raises important unresolved questions. How does the
model degree determine the memory property and dy-
namical behaviors? Is it possible to efficiently select
the optimal degree in practice?

The goal of this work is to shed light on both two ques-
tions through a theoretical and empirical investigation.
We focus on a unified expression of the aforementioned
variants of RNNs named tensor-power (TP) recurrent
models, in which the degree-p polynomial is reformu-
lated as a p-fold tensor product of the hidden states
multiplied by a weight tensor.

Theoretically, we prove the long memory property
of the model requires a large value of the degree
p (see Thm. 2), while in this case the unstable be-
haviors of the model are inherently inevitable (see
Thm. 3). Empirically, we propose a degree-learnable
method to seek a “saddle-point” of balancing the long
memory effect and stability of the model. In particu-
lar, we extend the feasible range of the model degree
from discrete to a continuous domain using tensor de-
composition (TD). The differentiable essence of the
degree allows us to efficiently learn it from datasets
by stochastic gradient descent (SGD) and its variants.
Endowing with the additional freedom on the degree
parameter, we expect that the new model can bene-
fit from the long memory effect yet keep the stability
reachable. Extensive numerical results demonstrate
the superior performance of the proposed model in
time series forecasting tasks with both shallow and rel-
atively deep architectures.

1.1 Related works

Polynomial recurrent neural networks (RNNs).
The earliest study of recurrent neural net-
works (RNNs) with polynomial transition dates
back to literature (Lee et al., 1986; Giles et al., 1990;
Pollack, 1991). Later, similar architectures are used
in various machine learning tasks (Sutskever et al.,
2011; Wu et al., 2016). More recently, the connec-
tion between higher-degree polynomial RNNs and
the weighted automata (WA) is uncovered through
spectral learning (Rabusseau et al., 2019), and on
the practical side the polynomials are also applied
to constructing the correlation among time-steps
in multimodal tasks (Hou et al., 2019; Li et al.,
2020a). Compared to those works, we are the first to
theoretically investigate the memory property of the
model, and the proposed method has the capability of
learning the optimal degree parameters from datasets

while the parameters are assumed to be fixed in
previous works.

Tensor methods in RNNs. There are three lines
of studying the tensor methods in RNNs. One line
of work is the extension of the polynomial RNNs to
higher-degree. In the existing works, the most closed
one to ours is HOTRNN (Yu et al., 2017a,b), and the
similar idea is extended in recent works on convolu-
tional LSTM (Huang et al., 2020a; Su et al., 2020).
Compared to those methods, we mainly focus on the
issue how the “tensor order” (i.e., the “degree” in this
work) influences the performance of RNNs and how
to obtain the optimal tensor order in a more efficient
manner rather than by the exhaustive search. The
second line is to apply tensor decomposition (TD) to
compressing RNNs (Tjandra et al., 2017; Yang et al.,
2017; Ye et al., 2018; Mehta et al., 2019; Pan et al.,
2019; Wang et al., 2020). Unlike ours, they still model
the transition function as a “linear” transform, yet re-
shaping the weights into high-order tensors. The third
line of work is to use the tensor network modeling to
analyze the expressive power of RNNs (Khrulkov et al.,
2017, 2019). In contrast, our work pays more effort
on the memory property and focuses on the impact by
the “tensor-order” rather than different decomposition
models.

RNNs for long memory. Many works have been
proposed on the long memory property of RNNs, for
instance, the works by Le et al. (2019); Trinh et al.
(2018); Voelker et al. (2019); Wang and Niepert (2019);
Lechner and Hasani (2020) to name a few. In this
work, the theoretical aspect is partially inspired by
recent studies (Greaves-Tunnell and Harchaoui, 2019;
Zhao et al., 2020) from the stochastic perspective and
the works by Pascanu et al. (2013); Miller and Hardt
(2018) from the stability perspective. Compared to
those works, we focus on more specific non-linear dy-
namics of the transition and analysing how the model
degree influences the memory property.

The study on multivariate factional polynomial fitting
originates by Royston and Altman (1994) in statis-
tics, and is also discussed in the deep learning commu-
nity (Gulcehre et al., 2014; Sun et al., 2018). Our work
on the degree-learnable approach is connected to those
works, but focuses on the different issue. Most re-
cently, we also extend the similar idea into a more gen-
eral form named fractional tensor network (Li et al.,
2020b), which focuses on different tensor structures
and feedforward learning models.

The proofs and additional experimental details can
be found in the supplementary material. Our code
is available at https: // github. com/ minogame/

AISTATS_ 2021 .
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2 Preliminaries

In this section, we first present basic notations of ten-
sor algebra. After that, we recall the definition of the
long memory in statistics in terms of recurrent network
process (RNP) (Zhao et al., 2020). Last, we introduce
the tensor-power (TP) recurrent model.

Notation. We define a tensor as a multi-dimensional
array of real numbers (Kolda and Bader, 2009). To
distinguish from the notion of “order” in time-series
analysis, we use the term degree of a tensor to denote
the number of indices. In the rest of the paper, we
use italic letters to denote scalars, e.g., n,N ∈ R, and
use boldface letters to denote vectors and matrices,
e.g., h,y ∈ Rn and W ∈ Rn×n. For higher-degree
tensors, we denote them by calligraphic letters, e.g.,
A,B ∈ RI1×I2×···×Id . Sometimes we also use the calli-
graphic letters to represent vectors or matrices without
ambiguity. The symmetry of a tensor is defined as the
invariance under arbitrarily reshuffling a sub-collection
of the tensor’s indices, and the index-shift operation of
a tensor is defined as rotating permuting the indices
of a tensor in counterclockwise order. Examples about
the “symmetry” and “index-shifting” are given in the
supplementary material. For any integer k, we use [k]
to denote the set of integers from 1 to k. For any
real number x, we use |x| and sgn(x) to denote its
absolute value and sign, respectively. If x ∈ RIx and
y ∈ RIy , we use 〈x,y〉 ∈ R and x ⊗ y ∈ RIx×Iy to
respectively denote the inner and tensor product be-
tween vectors, and their straightforward extension to
matrices and tensors. Moreover, we use x⊗p ∈ RIpx to
denote the degree-p tensor power (TP), which repre-
sents the p-fold tensor product of x with itself. For a
degree-q tensor G ∈ Rnq

and a vector x ∈ Rn, we use
G ×i x, i ∈ [q] to denote tensor-vector product along
the ith index (Cichocki et al., 2007). The spectral
norm of a tensor G ∈ RI1×···×Iq is denoted by ‖G‖2,
which is defined as

‖G‖2 = sup
ui∈RIi ,i∈[q]

‖G ×1 u1 ×2 · · · ×q uq‖2,

s.t. ‖ui‖2 ≤ 1,∀i
, (1)

where ‖ui‖2 denotes the Euclidean norm of ui.

2.1 Recurrent network process (RNP)

The notion of recurrent network process (RNP) is de-
fined to analyze the memory mechanism of recurrent
neural networks (RNNs). Specifically, assume a gen-
eral RNN with input {x(t)}, output {y(t)} and the hid-
den states {h(t)} where y(t) ∈ Rl and h(t) ∈ Rm, then
its RNP is defined as a homogeneous Markov chain

with a transition function M :(
y(t)

h(t)

)
= M

(
y(t−1)

h(t−1)

)
+

(
ε(t)

0

)
, (2)

where {ε(t)} represents a sequence of independent and
identically distributed (i.i.d.) random vectors. Eq. (2)
can be used to describe various RNNs like the vanilla
RNN and LSTM (Hochreiter and Schmidhuber, 1997)
without exogenous inputs. The term short or long
memory of the stochastic process generated by Eq. (2)
is roughly defined as below. More precise definition is
given in works by Beran et al. (2016); Greaves-Tunnell
and Harchaoui (2019); Zhao et al. (2020). Roughly
speaking,

Definition 1 (memory of RNPs, roughly). The pro-

cess
{

s(t) :=
(
y(t),>,h(t),>)> ∈ Rl+m

}
generated by

Eq. (2) has short memory if its autocovariance func-
tion is summable. Otherwise, the process has long
memory.

The relationship between the memory property and
the operator norm of the transition function M is re-
vealed as below:

Assumption 1. (1) The joint density function of ε(t)
is continuous and positive everywhere; (2) for some
κ ≥ 2, E‖ε(t)‖κ2 <∞.

Theorem 1 (by Zhao et al. (2020)). Under Assump-
tion 1, if there exist real numbers 0 < a < 1 and b
such that ‖M(x)‖2 ≤ a‖x‖2 +b, then the RNP (2) has
short memory.

Def. 1 and Thm. 1 will be used in Sec. 3.1 to model
and analyze the memory property of the TP recur-
rent model. We use them to bridge the gap from the
memory property to the tensor power operation.

2.2 Tensor-power (TP) recurrent model

A degree-p tensor-power (TP) recurrent model, with
its input x(t) ∈ Rl and hidden state h(t) ∈ Rm at the
time-step t, is defined as2

h(t) = G ×1

(
x(t)

h(t−1)

)
×2 · · · ×p

(
x(t)

h(t−1)

)
= G ·

(
x(t)

h(t−1)

)⊗p , (3)

where G ∈ Rnp×m, n = l+m denotes a degree-(p+ 1)
tensor, which is partially symmetric involving the first
p indices. The symbol · is used as a simplified rep-
resentation of the sequential tensor-vector multiplica-
tion in Eq. (3). In this case, the current state h(t) is

2Here the bias term is omitted for brevity.
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updated by a system of degree-p homogeneous poly-
nomials of the concatenation of the input and the his-
toric values of the state. Its more general extensions
that include inhomogeneous terms can be trivially ob-
tained by padding additional constants along x(t). Al-
though activation functions such as “tanh” or “ReLU”
are popularly used in the model, in this work we con-
sider the case that the activation functions are ignored
in order to simplify the theoretical results. We claim
that in practical tasks the non-trivial tensor power op-
eration has the capability of providing sufficient non-
linearity to the model.

Examples. The model (3) would degenerate into the
most common linear form when p = 1. If setting
p = 2, Eq. (3) can fully describe the dynamics of mod-
els in the works by Giles et al. (1990); Sutskever et al.
(2011); Wu et al. (2016), and has a strong connec-
tion to weighted finite automata (WTAs) (Rabusseau
et al., 2019). For the higher-degree case, Eq. (3) is
strongly related to various tensor recurrent models (Yu
et al., 2017a; Huang et al., 2020a; Su et al., 2020).
It is worth noting that in those methods the non-
Markovian model is also applied by considering longer
historic hidden states into the recurrent process. Our
empirical results show that additional historic states
are not necessary for the long memory property.

3 Memory of TP recurrent model

In this section, we theoretically investigate the mem-
ory mechanism of the TP recurrent model (3) from
both stochastic and stability perspectives, and focus
on proving how the degree determines the memory
property of the model. Note that, in the theoretical
analysis, we do not apply tensor decomposition (TD)
to the weights, which is different from the works by Yu
et al. (2017a); Su et al. (2020). TD will be exploited
in Sec. 4 to develop a degree-learnable model.

3.1 Perspective from RNPs

Assume that the output of the TP recurrent model
is also obtained by the similar degree-p tensor power
form to Eq. (3) and there is no exogenous input, i.e.,
x(t) = y(t−1), then Eq. (2) can be specified as

s(t) =M×1 s(t−1) ×2 · · · ×p s(t−1) + e(t)

=M ·
(
s(t−1)

)⊗p
+ e(t), ∀t

, (4)

where s(t) :=
(
y(t),>,h(t),>)> ∈ Rl+m, n = l + m,

M ∈ Rn(p+1)

denotes a degree-(p + 1) tensor with
the symmetric structure among the first p indices, and

e(t) :=
(
ε(t),>, 0

)>
. Below, we refer to the stochastic

process generated by the model (4) as tensor-power

recurrent network process (TP-RNP). Below we in-
vestigate how the degree p influences the memory of
TP-RNP under Def. 1. First, we show that TP-RNP
has short memory if the spectral norm ofM is upper-
bounded.

Lemma 1. Under Assumption 1, the tensor-power re-
current network process (TP-RNP) (4) has short mem-
ory under Def. 1 if the spectral norm of the tensor M
obeys ‖M‖2 < 1.

The claim is a natural corollary from Thm. 1. It is
implied from Lemma 1 that TP-RNP has the short
memory property if the spectral norm of the tensor
M is sufficiently small. As pointed out by Zhao et al.
(2020), the condition is often satisfied in practice when
p = 1 (i.e., the linear RNN), because the entries ofM
are practically bounded away from one. However, can
we expect that the short memory of TP-RNP (4) would
be kept if increasing the degree parameter p > 1? To
study this point, we specify that the entries ofM obey
the sub-Gaussian distribution, i.e.,

Assumption 2 (sub-Gaussian and decoupling).
The tensor M is obtained by the average over all p

first-p-indices-shifted variants of a tensor A ∈ Rn(p+1)

,
of which each entries Ai1,i2,...,ip+1

is independent, zero-

mean and satisfied E
(
etAi1,i2,...,ip+1

)
≤ eσ2t2/2.

It is easily known that the averaged tensor M is
symmetric among the first p indices. Moreover, be-
cause the sub-Gaussian distribution generates samples
concentrating around zero with few outliers, the as-
sumption is empirically reasonable as aforementioned.
Next, we theoretically reveal how the degree impacts
the model’s memory property. Assuming that our TP-
RNP satisfies Assumption 1 and 2, we show below that
the long memory requires a high model degree. Specif-
ically,

Theorem 2 (Long memory requires a high
model degree.). Under Assumptions 1 and 2, with
high probability, if TP-RNP (4) has the long memory
under Def. 1, then the following inequality obeys:

p ≥ p0
2

(
1 +

√
1 +

C1

nσ2
− C2

n

)
− 1, (5)

where p0 = log(3/2), and C1, C2 denote two positive
constants.

The inequality (5) is obtained using Lemma 2 and the
results on the non-asymptotic bound of tensor spectral
norm given by Tomioka and Suzuki (2014). We can see
that the degree p is controlled by both the dimension
of the model and the distribution of M. Fixed the
dimension n, a smaller value of σ2 leads to a larger
value of the degree p for the long memory.
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Thm. 2 implies that the degree p should be sufficiently
large, otherwise the model only has short memory (see
Fig. 1 in the supplementary material for the visualiza-
tion of the bound in (5)). Intuitively, the model with a
higher-degree would result in an unbounded non-linear
transition function. In this case, the transition plays
a role like an “amplifier”, such that at each time-step
both the hidden states and input would be amplified
by the degree p. As the result, it would become un-
easy for the network to “forget” the information a long
time ago, i.e., the long memory effect.

3.2 Perspective from stability analysis

The long memory effect does not guarantee the recur-
rent model is trainable. It is therefore of importance
to state clearly whether an unstable behavior would
happen in the TP recurrent model. In particular, how
does the model degree affect the stability of the model?

Recall the TP recurrent model (3). To answer the
question, we define its stability following the defini-
tion given by Miller and Hardt (2018) for an arbitrary
recurrent model. Specifically,

Definition 2 (stability of TP recurrent model).
The model (3) is stable if there exist some λ < 1 such
that, for any states h, h′, and input x,∥∥∥∥∥G ·

((
x
h

)⊗p
−
(

x
h′

)⊗p)∥∥∥∥∥
2

≤ λ‖h− h′‖2. (6)

As shown in Def. 2, the TP recurrent model is stable
if Eq. (3) is λ-Lipschitz with λ < 1. Hence, we next
prove that the TP recurrent model is not Lp-Lipschitz
if p > 1. Before the main claim, we first give a general
form of the Jacobian of Eq. (3):

Lemma 2 (Jacobian of the model). For any ten-
sor G ∈ Rnp×m of degree-(p + 1), p > 0, the Jacobian

matrix ∂h(i)

∂h(i−1) with respect to Eq. (3) is equal to

J
(
h(i−1); x(i)

)
=

∂h(i)

∂h(i−1) =

p∑
k=1

(
G ·
(

x(i)

h(i−1)

)⊗p/{k})
×p+1

(
0l
Im

),
(7)

where 0l ∈ Rl×m denotes the matrix filled by zeros,
Im ∈ Rm×m is a identity matrix, and the operator
( · )⊗p/{k} denotes the sequential “tensor-vector” prod-
uct along the indices in the ordered set [p]/{k}. If G is
symmetric among the first p indices, then Eq. (7) can
be simplified as

Js(h
(i−1); x(i)) = p

(
G ·
(

x(t)

h(t−1)

)⊗(p−1))
×p+1

(
0l
Im

)
.

(8)

As shown in Lemma 2, the Jacobian is a constant ma-
trix when p = 1. It implies that a linear recurrent
model is stable if the spectral norm of G is sufficiently
small. In this case, the model has the short memory
as Lemma 1. Next, we give the main claim by prov-
ing the Jacobian (7) is unbounded, which implies the
high-degree TP recurrent model would be in an unsta-
ble regime.

Theorem 3 (High degree models lead to unsta-
ble behaviors.). Given a tensor G with the symmet-
ric structure among the first p indices, assume G has

non-zero sub-blocks with respect to U =
(
0>l Im

)>
, i.e.

‖G ·U⊗p‖2 6= 0. For any positive number K > 0 and
p > 1, there always exist a pair of vectors h ∈ Rm and
x ∈ Rl, such that ‖Js(h; x)‖2 > K, i.e., the model (3)
is unstable under Def. 2.

Thm. 3 implies that the TP recurrent model (3) is
non-Lipschtiz-continuous when p > 1. In this case,
the model would stay in the unstable regime accord-
ing to Def. 2. It is known that the gradients of the
loss function explode in unstable models (Hardt et al.,
2018). Therefore, Thm. 3 partially reveal the insight
why most of (high-degree) tensor models are practi-
cally difficult to train, even in the deep feedforward
neural networks (Su et al., 2020; Huang et al., 2020b).

3.3 Discussion

The aforementioned results show a desperate picture:
it seems difficult for the model to obtain the long mem-
ory effect meanwhile operating in a stable regime. To
infer its causes, we conjecture the culprit is the dis-
crete essence of the degree parameter p. For instance,
p = 1 (i.e., the linear form) provides the model supe-
rior stability with a generally short memory; however,
the p = 2, 3, . . . cases will result in unstable states
and a potential long memory. It inspires us to seek
the “edge” of such phase transition from the middle
of integers (even less than one). As the consequence,
we could benefit from the both stability and long-
term memory in practice. However, it is non-trivial
to achieve the goal because the degree-p tensor power
is defined as the multiple folds of tensor products. To
tackle the issue, in the next section we reformulate the
weight tensor G in Eq. (3) using the well-known tensor
decomposition (TD), which allows us to extend the
feasible region of p from the intrinsically discrete to
a continuous domain. The extension gives the model
the capability of spontaneously learning the optimal
degree parameter with respect to the loss function.
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4 Degree-learnable approach

Below, we show how to extend the discrete degree pa-
rameter to a continuous domain, and empirically intro-
duce a degree-learnable approach for the correspond-
ing RNNs.

4.1 Model description

Recall the TP recurrent model (3) yet adding the bias
term for the empirical purpose:

h(t) = G ·
(

x(t)

h(t−1)

)⊗p
+ b, (9)

where b ∈ Rm. Thus the jth entry of the hidden state
h(t), i.e. h(t)[j], can be rewritten as

h(t)[j] =

〈
Gj ,
(

x(t)

h(t−1)

)⊗p〉
+ b[j], (10)

where Gj ∈ Rnp

denotes the sub-block of G by fixing
the last index to equal j. Then we know the tensor
Gj is super-symmetric (Cichocki et al., 2007). In this
form, the parameter p is only defined in the range of
non-negative integers, i.e., p ∈ Z+. Next, we apply
symmetric tensor decomposition (Comon et al., 2008;
Brachat et al., 2010) to decomposing the tensor Gj
into factors, a.k.a., latent components (Cichocki et al.,
2007). As a result, Eq. (10) can be represented as

h(t)[j] =

R∑
r=1

〈
wj,r,

(
x(t)

h(t−1)

)〉p
+ b[j], (11)

where wj,r ∈ Rn denotes the r-th factor of Gj and
R > 0 corresponds to the symmetric tensor rank.
Comon et al. (2008) shows that the decomposition al-
ways exists for any symmetric tensor Gl if the rank R
is sufficiently large, which implies the equivalence be-
tween Eq. (10) and (11). Apart from the equivalence,
we can also see that the parameter p is converted into
a vanilla exponent, which has explicit definition on not
Z+ but the real field R. It allows us to naturally extend
the TP recurrent model to the “real” degree. However,
given a non-integer p, note that the exponential term
in Eq. (11) is defined only when the base (i.e., the
inner product term) is positive. Therefore, we heuris-
tically extract the sign of the base from exponential
function, i.e.,

h(t)[j] =

R∑
r=1

aj,r

∣∣∣∣〈wj,r,

(
x(t)

h(t−1)

)〉∣∣∣∣p + b[j], (12)

where aj,r := sgn

(〈
wj,r,

(
x(t)

h(t−1)

)〉)
. Given any

p ∈ R, define an element-wise non-linear function

φp(·) : Rm → Rm, of which each element φp(s) is given
by

φp(s) = sgn(s) · |s|p , (13)

then we finally have the extended TP recurrent model
by concatenating Eq. (12) over all possible j ∈ [m],
i.e.,

h(t) =

R∑
r=1

φp

(
Whh,rh

(t−1) + Whx,rx
(t)
)

+ b, (14)

where Whh,r ∈ Rm×m and Whx,r ∈ Rm×l are the
weights, where the j-th row of their concatenation cor-
responds to the vector wj,r in Eq. (12).

It can be seen that the transition of the hidden states
in Eq. (14) results in a multi-branch neural network
following the activation function φp, and the number
of branches is determined by the maximum of the sym-
metric tensor rank of Gj , ∀j ∈ [l].

Remark. We can see that the degree-induced func-
tion φp is able to provide sufficient non-linearity (when
p 6= 1) to the learning model even if the standard “ac-
tivations” are omitted. Moreover, Zhao et al. (2020)
shows that any saturated continuous activation func-
tions like “tanh” and “sigmoid” lead to short memory
of the model. Unlike them, the function φp is un-
bounded if p 6= 0, and its curvature is controllable in
terms of the parameter p. Therefore, the model (14)
can be also considered as an activation-learnable recur-
rent model, which is expected to have the long-memory
effect.

4.2 Application in RNNs

The model (14) can be directly employed to replace
the original recurrent model in both vanilla RNN and
LSTM. For the latter, we suggest a similar way by Yu
et al. (2017a), i.e.,

[i(t),g(t), f (t),o(t)] =

R∑
r=1

φp

(
Whh,rh

(t−1) + Whx,rx
(t)
)

+ b,

c(t) = c(t−1) ◦ f (t), h(t) = c(t) ◦ o(t)

(15)

where ◦ denotes the Hadamard product. In addition,
the trick by considering more historic states as (Soltani
and Jiang, 2016; Yu et al., 2017a) can be trivially ap-
plied to the model (14).

Besides the hidden state, we suggest two methods to
learning the degree parameter p in the training phase.
The most vanilla way is just to consider p as a trainable
variable. Since its feasible range becomes the whole
real field R, p can be efficiently trained by stochastic
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gradient descent (SGD) and its variants. The second
way is to learn the parameter p by sub-networks, i.e.,

p(t) = MLP
(
p(t−1),h(t−1),x(t)

)
, (16)

where MLP ( · ) denotes a multilayer percep-
tron (MLP), and p(t) is the degree parameter at
time-step t. Unlike the first method, the sub-network
gives the model the variety of the degree parameters
for different time-steps. From the empirical perspec-
tive, it is reasonable because the model would have an
“attention-like” mechanism to selectively remember
more important information from the data.

5 Experiments

In this section, we numerically show the model (14)
can achieve the superior performance on various time-
series forecasting tasks.

5.1 Single-cell architecture

We first evaluate the performance of the model on four
long memory datasets. To eliminate the irrelevant in-
fluence by the network architecture, we compare the
models by employing them in a single-cell RNN frame-
work.

Dataset. We consider one synthetic dataset and
three real-world datasets in this experiment, including
“ARFIMA” (Zhao et al., 2020), “Dow Jones Indus-
trial Average (DJI)”, “Traffic” (UCI, 2019) and “tree-
ring (Tree)” (TSDL, 2019). The length of the training,
validation, and test sets for each dataset is given in the
supplementary material. Zhao et al. (2020) shows that
the four datasets have strong long-range dependence,
i.e., the long memory property. In the experiment, we
perform one-step rolling forecasts on the test set.

Setup. In our model, we use a two-layers MLP of the
hidden dimension equaling 3 to calculate the degree
parameter p, and fix the tensor rank R in Eq. (14)
to equal 1. Moreover, we also apply the trick men-
tioned in Soltani and Jiang (2016); Yu et al. (2017a)
by taking more historic states (one step more or none)
into account, and the model is selected by choosing the
one with the best performance on the validation set.
In the training phase, we apply the mean square er-
ror (MSE) as the loss function, and employ the Adam
algorithm with learning rate equaling 0.01 for opti-
mization, which stops after 1000 epochs.

For comparison, we also report the performance of
various RNN models given by Zhao et al. (2020),
which includes the vanilla RNN (RNN), two-lane RNN
with the past 100 values as input (RNN2), recur-
rent weighted average network (RWA), MIxed hiSTory

Table 1: Performance comparison in terms of RMSE,
where the average and standard deviation (in brackets)
are reported, and the best results are hightlighted in
bold.

ARFIMA DJI(×100) Traffic Tree

RNN
1.1620 0.2605 336.44 0.2871

(0.1980) (0.0171) (10.401) (0.0086)

RNN2
1.1630 0.2521 336.32 0.2855

(0.1820) (0.0112) (10.182) (0.0077)

RWA
1.6840 0.2689 346.62 0.3048

(0.0050) (0.0095) (1.410) (0.0001)

MIST
1.1390 0.2604 358.09 0.2883

(0.1832) (0.0154) (16.270) (0.0091)

MRNN
1.0880 0.2487 333.72 0.2818

(0.1140) (0.0105) (10.157) (0.0053)

LSTM
1.1340 0.2492 337.60 0.2833

(0.1200) (0.0128) (8.146) (0.0070)

MLSTM
1.1490 0.2531 337.83 0.2859

(0.1660) (0.0130) (9.440) (0.0083)

Ours
1.0691 0.2672 329.22 0.2799
(0.0245) (0.0526) (3.3713) (0.0023)
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Figure 1: Training time per epoch with various length
of the training sets.

RNNs (MIST), memory-augmented RNN (MRNN),
vanilla LSTM (LSTM), and memory-augmented
LSTM (MLST). All the experiments run indepen-
dently by 50 times, where both the mean value and
standard deviation (std.) of the root-mean-square er-
ror (RMSE) on the test sets are illustrated.

Results. The RMSE performance by various models
is shown in Table 1. We can see that our model (14)
outperforms other methods on “ARFIMA”, “Traffic”
and “Tree”, and remains competitive on “DJI”. Apart
from the mean value, we can also see that our model
gives smaller standard deviation than its counterpart
like MRNN and MLSTM. Although RWA gives the
smallest std. in the experiment, yet its average perfor-
mance is not comparable to ours. In addition, Figure 1
shows the average training time per epoch under var-
ious training size. As shown in Figure 1, our model
is twice slower than the vanilla RNN yet 10× faster
than MRNN, which has the most closed performance
to ours.
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Larger ranks make the network less non-
convex. Table 2 shows the results of our model on
“ARFIMA” with various tensor rank R. We can see
a counter-intuitive phenomenon that a larger tensor
rank would neither improve (even degrade) the pre-
diction accuracy nor decrease the training loss. In
fact, the similar results have been also reported in
several tensor literature (Liu et al., 2018; Li et al.,
2020a; Huang et al., 2020b). It is worth noting that,
although the averages of loss are almost unchanged
when increasing the rank, yet the kurtosis (a concen-
tration measure of the distribution) significantly in-
creases. We infer that the model with large ranks
generally has a more flat landscape in the training
phase, i.e., the loss is less non-convex, such that the
well-trained loss values are less influenced by gradient-
based optimizers with different initialization. This re-
sult is empirically consistent with a recent study on
the landscape of multi-branch feedforward neural net-
works (Zhang et al., 2019).

Are more historic states really necessary?
Table 3 shows the test RMSE of our model on
“ARFIMA” and “Tree” armed with various numbers
of historic states as Soltani and Jiang (2016); Yu et al.
(2017a), where Dh = 1 denotes only the current hid-
den state is used. It can be seen that additional states
would improve the prediction accuracy. We infer that
more historic information of the hidden states would
enhance the short-term prediction capability of the
model. On the other hand, the performance would
be worse if too much “history” is used. We conjecture
that in this case the short-term contribution would
dominate the prediction performance, such that the
model cannot well exploit the long memory effect.

Table 2: Performance of the proposed model on
“ARFIMA” under various ranks.

RMSE Training loss
mean std. mean std. kurtosis

R = 5 1.0851 0.0270 0.0078 0.0003 2.0620
R = 10 1.0963 0.0261 0.0079 0.0003 2.6152
R = 30 1.1057 0.0315 0.0081 0.0004 3.2933
R = 50 1.1103 0.0316 0.0081 0.0004 3.6301

5.2 Seq2seq architecture

Next, we evaluate the effectiveness of our model in a
deeper architecture, seq2seq, on the forecasting task.

Datasets. We consider one synthetic dataset and
two real-word datasets in the experiment, including
“Genz” (Yu et al., 2017a), “Traffic of Los Angeles

Table 3: Test RMSE of the proposed model on
datasets “ARFIMA” and “Tree”. Each row of the ta-
ble represents the model arms with different numbers
of the historic states, where Dh = 1 denotes only the
current hidden sate is used.

ARFIMA Tree
mean std. mean std.

Dh = 1 1.0828 0.0353 0.2799 0.0023
Dh = 2 1.0691 0.0245 0.2803 0.0021
Dh = 3 1.0741 0.0388 0.2805 0.0022
Dh = 5 1.0743 0.0348 0.2803 0.0021
Dh = 10 1.0835 0.0357 0.2814 0.0018

County (TrafficLA)”3 and “Solar”4. The preprocess-
ing details and the data format are introduced in the
supplementary material. Unlike the one-step rolling
forecast in the single-cell experiment, here we use par-
tial observation to predict the rest of the time series,
i.e., relatively long-term prediction.

Setup. We follow a similar setup to the experiments
given by Yu et al. (2017a). In our model, we modify
the LSTM cells in the seq2seq network as Eqs. (15),
and learn the degree parameters by the both train-
able variables (Vanilla) and sub-networks (Sub-net) as
mentioned in Sec. 4.2. To train the models, we use the
sum of square errors as the loss function and RMS-
prop as the optimizer. For comparison, we employ
the seq2seq models with both RNN and LSTM in the
experiment. We also compare the performance with
the high-order tensor LSTM (HOTLSTM) (Yu et al.,
2017a), which is the most related tensor method to
ours. More details such as the hyper-parameter search
are given in the supplementary material.

Table 4: The best RMSE performance on the test sets.
In our models, “vanilla” indicates directly learning the
degree parameters as trainable variables, and “Sub-
nets” means they are learned by sub-networks. The
column “size” shows the number of trainable parame-
ters for each model (rounding to 100).

Genz TrafficLA Solar Size
RNN 0.0172 0.0874 0.1273 –
LSTM 0.0085 0.0900 0.0947 3300
HOTLSTM 0.0074 0.0851 0.0933 2600
Ours (Vanilla) 0.0061 0.0853 0.0933 2400
Ours (Sub-net) 0.0068 0.0828 0.0926 2900

Results. Table 4 shows the best RMSE performance
of various models on the three datasets. We can see
that our models outperform not only the conventional

3http://pems.dot.ca.gov
4https://www.nrel.gov/grid/solar-power-data.html
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Figure 2: Validation dynamics on “Genz” and the vi-
sualization of the prediction on “TrafficLA”.

RNN and LSTM but also the more advanced tensor-
based model HOTLSTM, and the model size of our
method is comparable. We also show the dynamics of
validation loss on “Genz” and the prediction visual-
ization on “TrafficLA” in Figure 2. We can see that
our model (Sub-nets, the black line) consistently ob-
tains superior validation loss with growing the training
steps, and prediction results visually demonstrate the
effectiveness of our model.

6 Discussion and concluding remarks

Our experiments show the recurrent neural net-
works (RNNs) can benefit from the learnable tensor-
power (TP) operations, and our theoretical results
show the degree parameter plays a critical role in the
both memory mechanism and dynamic behaviors of
the TP recurrent model.

An interesting finding in the experiments is that grow-
ing the tensor rank R in Eq. (14) does not improve
the approximation error of the model. It implies that
the rank would not be a key factor to determine the
approximation capacity of the model5. The result is
partially counter-intuitive. Therefore, the study of the
model’s approximation theorem remains important for
future work.
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